Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36671626

RESUMO

Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signals captured by the elicitation of emotion using audio-visual stimuli, and many studies have been conducted to classify emotions using these datasets. However, baseline power removal is still considered one of the trivial aspects of preprocessing in feature extraction. The most common technique that prevails is subtracting the baseline power from the trial EEG power. In this paper, a novel method called InvBase method is proposed for removing baseline power before extracting features that remain invariant irrespective of the subject. The features extracted from the baseline removed EEG data are then used for classification of two classes of emotion, i.e., valence and arousal. The proposed scheme is compared with subtractive and no-baseline-correction methods. In terms of classification accuracy, it outperforms the existing state-of-art methods in both valence and arousal classification. The InvBase method plus multilayer perceptron shows an improvement of 29% over the no-baseline-correction method and 15% over the subtractive method.

2.
Sensors (Basel) ; 22(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458940

RESUMO

Electroencephalogram (EEG) signals may get easily contaminated by muscle artifacts, which may lead to wrong interpretation in the brain-computer interface (BCI) system as well as in various medical diagnoses. The main objective of this paper is to remove muscle artifacts without distorting the information contained in the EEG. A novel multi-stage EEG denoising method is proposed for the first time in which wavelet packet decomposition (WPD) is combined with a modified non-local means (NLM) algorithm. At first, the artifact EEG signal is identified through a pre-trained classifier. Next, the identified EEG signal is decomposed into wavelet coefficients and corrected through a modified NLM filter. Finally, the artifact-free EEG is reconstructed from corrected wavelet coefficients through inverse WPD. To optimize the filter parameters, two meta-heuristic algorithms are used in this paper for the first time. The proposed system is first validated on simulated EEG data and then tested on real EEG data. The proposed approach achieved average mutual information (MI) as 2.9684 ± 0.7045 on real EEG data. The result reveals that the proposed system outperforms recently developed denoising techniques with higher average MI, which indicates that the proposed approach is better in terms of quality of reconstruction and is fully automatic.


Assuntos
Artefatos , Análise de Ondaletas , Algoritmos , Eletroencefalografia/métodos , Músculos , Processamento de Sinais Assistido por Computador
3.
Sensors (Basel) ; 22(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35336517

RESUMO

Emotion recognition using EEG has been widely studied to address the challenges associated with affective computing. Using manual feature extraction methods on EEG signals results in sub-optimal performance by the learning models. With the advancements in deep learning as a tool for automated feature engineering, in this work, a hybrid of manual and automatic feature extraction methods has been proposed. The asymmetry in different brain regions is captured in a 2D vector, termed the AsMap, from the differential entropy features of EEG signals. These AsMaps are then used to extract features automatically using a convolutional neural network model. The proposed feature extraction method has been compared with differential entropy and other feature extraction methods such as relative asymmetry, differential asymmetry and differential caudality. Experiments are conducted using the SJTU emotion EEG dataset and the DEAP dataset on different classification problems based on the number of classes. Results obtained indicate that the proposed method of feature extraction results in higher classification accuracy, outperforming the other feature extraction methods. The highest classification accuracy of 97.10% is achieved on a three-class classification problem using the SJTU emotion EEG dataset. Further, this work has also assessed the impact of window size on classification accuracy.


Assuntos
Eletroencefalografia , Emoções , Encéfalo , Eletroencefalografia/métodos , Entropia , Redes Neurais de Computação
4.
Sensors (Basel) ; 22(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35271089

RESUMO

In many studies regarding the field of malaria, environmental factors have been acquired in single-time, multi-time or a short-time series using remote sensing and meteorological data. Selecting the best periods of the year to monitor the habitats of Anopheles larvae can be effective in better and faster control of malaria outbreaks. In this article, high-risk times for three regions in Iran, including Qaleh-Ganj, Sarbaz and Bashagard counties with a history of malaria prevalence were estimated. For this purpose, a series of environmental factors affecting the growth and survival of Anopheles were used over a seven-year period through the Google Earth Engine. The results of this study indicated two high-risk times for Qaleh-Ganj and Bashagard counties and three high-risk times for Sarbaz county over the course of a year observing an increase in the abundance of Anopheles mosquitoes. Further evaluation of the results against the entomological data available in previous studies showed that the high-risk times predicted in this study were consistent with an increase in the abundance of Anopheles mosquitoes in the study areas. The proposed method is extremely useful for temporal prediction of the increase in abundance of Anopheles mosquitoes in addition to the use of optimal data aimed at monitoring the exact location of Anopheles habitats.


Assuntos
Anopheles , Malária , Animais , Malária/epidemiologia , Mosquitos Vetores , Tecnologia de Sensoriamento Remoto , Ferramenta de Busca , Fatores de Tempo
5.
Sensors (Basel) ; 21(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884087

RESUMO

Efficiently implementing remote sensing image classification with high spatial resolution imagery can provide significant value in land use and land cover (LULC) classification. The new advances in remote sensing and deep learning technologies have facilitated the extraction of spatiotemporal information for LULC classification. Moreover, diverse disciplines of science, including remote sensing, have utilised tremendous improvements in image classification involving convolutional neural networks (CNNs) with transfer learning. In this study, instead of training CNNs from scratch, the transfer learning was applied to fine-tune pre-trained networks Visual Geometry Group (VGG16) and Wide Residual Networks (WRNs), by replacing the final layers with additional layers, for LULC classification using the red-green-blue version of the EuroSAT dataset. Moreover, the performance and computational time are compared and optimised with techniques such as early stopping, gradient clipping, adaptive learning rates, and data augmentation. The proposed approaches have addressed the limited-data problem, and very good accuracies were achieved. The results show that the proposed method based on WRNs outperformed the previous best results in terms of computational efficiency and accuracy, by achieving 99.17%.


Assuntos
Redes Neurais de Computação , Telemetria , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...